216k views
5 votes
Evaluate ∫(2tanxcosx+7) dx. Here C is the constant of integration.

Evaluate ∫(2tanxcosx+7) dx. Here C is the constant of integration.-example-1
User Stefanie
by
4.2k points

1 Answer

4 votes

Given:

The function is:


\int(2\tan x\cos x+7)dx

Find-:

Evaluate the expression

Explanation-:

Use integration property is:


\int(a+b)dx=\int adx+\int bdx

So the expression is:


\begin{gathered} =\int(2\tan x\cos x+7)dx \\ \\ =\int2\tan x\cos xdx+\int7dx \\ \\ =2\int\tan(x)\cos(x)dx+7\int1dx \end{gathered}

Simplify the expression is:


\begin{gathered} =2\int\tan(x)\cos(x)+7\int1dx \\ \\ =2\int(\sin x)/(\cos x)*\cos(x)dx+7\int1dx \\ \\ =2\int\sin(x)dx+7\int1dx \end{gathered}

Use integration formula is:


\begin{gathered} \int\sin x=-\cos x \\ \\ \int1dx=x \end{gathered}

So, the value is:


\begin{gathered} =2\int\sin(x)dx+7\int1dx \\ \\ =-2\cos x+7x+C \end{gathered}

User Nawaz
by
4.6k points