We are given the following equation:
![0.4(2x+(1)/(2))=3(0.2x+(-2))-4](https://img.qammunity.org/2023/formulas/mathematics/college/tkzbkgx06oo6t6ax07o9nvbmykdrp3vgb7.png)
First, we will use the distributive property:
![0.8x+0.2=0.6x+3(-2)-4](https://img.qammunity.org/2023/formulas/mathematics/college/6aeeohed087j3gud88lp6no7x0k4sdvxcp.png)
Now, we solve the product 3(-2):
![0.8x+0.2=0.6x-6-4](https://img.qammunity.org/2023/formulas/mathematics/college/m6qedhcxeku1tit3u406ohk8xct44jjv14.png)
Now, we add like terms:
![0.8x+0.2=0.6x-10](https://img.qammunity.org/2023/formulas/mathematics/college/c735uplm32id3msx08kfgachmoogel5219.png)
Now, we will subtract 0.6x from both sides:
![\begin{gathered} 0.8x-0.6x+0.2=0.6x-0.6x-10 \\ 0.2x+0.2=-10 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8low953sij3aph36l8q6q4l1juzaf0ie6e.png)
Now, we will subtract 0.2 from both sides:
![\begin{gathered} 0.2x+0.2-0.2=-10-0.2 \\ 0.2x=-10.2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/q39dubg0fyshupo5mnfqwtljy1bjxrs01q.png)
Now, we divide both sides by 0.2:
![x=-(10.2)/(0.2)](https://img.qammunity.org/2023/formulas/mathematics/college/up9g8ha938zwctam8xin14f021jss4emsa.png)
Solving the operation:
![x=-51](https://img.qammunity.org/2023/formulas/mathematics/college/qzoub8ja95rzy1554x4r30qdx0d1xf5drf.png)
Therefore, the value of "x" is -51.