Step 1
Redraw the diagram and use the Pythagoras theorem to find the value of c\x.
Step 2:
Find the value of y from the right-angle triangle of sides: 10, 25 and y using the Pythagoras theorem
Opposite = y
Adjacent = 10
Hypotenuse = 25
![\begin{gathered} \text{Pythagoras theorem} \\ \text{Opposite}^2+adjacent^2=hypotenuse^2 \\ y^2+10^2=25^2 \\ y^2\text{ + 100 = 625} \\ y^2\text{ = 625 - 100} \\ y^2\text{ = 525} \\ y\text{ = }\sqrt[]{525} \\ y\text{ = 5}\sqrt[]{21} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/lz4ffjfr9rpunn9ifxdboz8rbdvh7jomzb.png)
Step 3
Next, use the Pythagoras theorem to find x from the triangle with sides
28, x and y
Hypotenuse = 28
Opposite = x
Adjacent = y
![\begin{gathered} x^2+y^2=28^2 \\ x^2\text{ + (5}\sqrt[]{21})^2=28^2 \\ x^2\text{ + 525 = 784} \\ x^2\text{ = 784 - 525} \\ x^2\text{ = 259} \\ \text{ x = }\sqrt[]{259} \\ x\text{ = 16.1} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/uqc13ar1v41s3z0amlbwc9h0g3fulwg8dq.png)
Final answer
x = 16.1