If there is no wind, then s = 0. Substituting into the equation:
![\begin{gathered} p=25-0.01\cdot0^2 \\ p=25 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/jew35yw9yu33r9uwlsy6nslrapsk5oh6ln.png)
The amount of particulate pollution when there is no wind is 25 ounces per cubic yard.
If there is no particulate pollution, then p = 0. Substituting into the equation:
![0=25-0.01s^2](https://img.qammunity.org/2023/formulas/mathematics/college/mgt3zsbxw7vsph1u089tx2nvf56jopdxza.png)
The expression on the right is a difference of squares. Taking the square root of each term:
![\begin{gathered} \sqrt[]{25}=5 \\ \sqrt[]{0.01s^2}=\sqrt[]{0.01}\sqrt[]{s^2}=0.1s \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hugh2beeg2ge0m5p2jbe76c7pbj7bkki7f.png)
Recalling the equation:
![0=(5-0.1s)(5+0.1s)](https://img.qammunity.org/2023/formulas/mathematics/college/drqxht5ybv11e73339btg68sclpk6qhjsi.png)
This equation has two solutions:
![\begin{gathered} 5-0.1s=0 \\ 5-0.1s+0.1s=0+0.1s \\ 5=0.1s \\ (5)/(0.1)=(0.1s)/(0.1) \\ 50=s \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/bzknjly4lr9ww9efuiblzsnukvlbfil5u1.png)
Or:
![\begin{gathered} 5+0.1s=0 \\ 5=-0.1s \\ (5)/(-0.1)=s \\ -50=s \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/scd4g07gusocdas95di9hum8xbo7jcswxl.png)
Wind speed cannot be negative, then the last solution is discarded.
The wind speed has to be 50 miles per hour to have no particulate pollution.