6.2k views
2 votes
Find C.Round to the nearest tenth.20 ft\22 ftAB18 ftC = [? ]°Law of Cosines: c2 = a2 + b2 - 2ab cos C=Enter

Find C.Round to the nearest tenth.20 ft\22 ftAB18 ftC = [? ]°Law of Cosines: c2 = a-example-1

1 Answer

4 votes

The given triangle is shown below

From the triangle


a=22ft,b=20ft,c=18ft,C=\text{?}

Using the law of Cosines


c^2=a^2+b^2-2ab\cos C

Substitute the values of a, b, c into the formula

This gives


18^2=22^2+20^2-2(22)(20)\cos C

Simplifying the expression


\begin{gathered} 324=484+400-880\cos C \\ 324=884-880\cos C \end{gathered}

Collect like terms


\begin{gathered} 324-884=-880\cos C \\ -560=-880\cos C \end{gathered}

Divide both sides by -880


\begin{gathered} (-560)/(-880)=\cos C \\ \cos C=0.6364 \end{gathered}

Find the value of C


\begin{gathered} C=\cos ^(-1)(0.6364) \\ C=50.5^(\circ) \end{gathered}

Find C.Round to the nearest tenth.20 ft\22 ftAB18 ftC = [? ]°Law of Cosines: c2 = a-example-1
User Drk
by
4.1k points