From the question,
we have the table below
We are to find
1. mean
![\mu=\sum ^6_(*=1)xp(x)](https://img.qammunity.org/2023/formulas/mathematics/college/gpaa28xl32l3ibaz63pfdbgcenb2izny6a.png)
By inserting values we get
![\begin{gathered} \mu=1(0.07)+2(0.07)+9(0.11)+12(0.52)+14(0.12)+19(0.11)_{} \\ \mu=0.07+0.14+0.99+6.24+1.68+2.09 \\ \mu=11.21 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/bynphwxxlxvi03ihlquphfn82whbht8pxt.png)
Therefore, mean = 11.21
2. Variance
The variance is given as
![\sigma^2=\sum ^6_(x=1)\lbrack x^2\ast p(x)\rbrack-\mu^2](https://img.qammunity.org/2023/formulas/mathematics/college/6ltp5796ow4nlwubfvmp55pom18gw0psjd.png)
Inserting values we get
![\begin{gathered} \sigma^2=\lbrack1(0.07)+4(0.07)+81(0.11)+144(0.52)+196(0.12)+361(0.11)\rbrack-11.21^2 \\ \sigma^2=\lbrack0.07+0.28+8.91+74.88+23.52+39.71\rbrack-125.6641 \\ \sigma^2=147.37-125.6641 \\ \sigma^2=21.7059 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/x9x7xzsu7ilaq0wgftuc6me0ixv41mt0h9.png)
Therefore,
The variance is 21.706
3. Standard deviation
this is given as
![\sigma=\sqrt[]{\sigma^2}](https://img.qammunity.org/2023/formulas/mathematics/college/1nil4daxtwmiiojjzy9q3k9t0m5jcp66vg.png)
Therefore,
![\begin{gathered} \sigma=\sqrt[]{21.7059} \\ \sigma=4.659 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/sfw2nl7k9p41wjgf0j3lezd0kv6zljjtb0.png)
Therefore,
Standard Deviation = 4.659
Expected Value
The expected value is given as
![\begin{gathered} E(X)=\sum ^6_(x=1)x\ast p(x) \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/u5vq675i3rahtdyj37d36qex3rxaq6i08d.png)
By inserting values we have
![\begin{gathered} E(X)=1(0.07)+2(0.07)+9(0.11)+12(0.52)+14(0.12)+19(0.11)_{} \\ E(X)=0.07+0.14+0.99+6.24+1.68+2.09 \\ E(X)=11.21 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/z1t709cirycpmw2ekzsuw3kp5ch77b10il.png)
Therefore, the expected value is 11.21