Given:
The resistances in the series are,
![\begin{gathered} R_1=9\text{ }\Omega \\ R_2=18\text{ }\Omega \\ R_3=30\text{ }\Omega \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/xw9z6kz5lrtjgfq1609kp3zo2g0cr8mthd.png)
The potential of the battery is,
![V=12\text{ V}](https://img.qammunity.org/2023/formulas/physics/college/k4o5gdwqjo602wzu7rwrg9udmro3o1ncs8.png)
To find:
The current flow through the resistors
Step-by-step explanation:
The equivalent resistance is,
![\begin{gathered} R=R_1+R_2+R_3 \\ =9+18+30 \\ =57\text{ }\Omega \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/ds8e04bondsrodwaiwuk9gvtr6u4mb8b7e.png)
The current in all the resistors will be the same as the resistances are in a series combination.
The current is,
![\begin{gathered} i=(V)/(R) \\ =(12)/(57) \\ =0.21\text{ A} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/6gtwnaglajnefi2c86anwcv37wmjyknayo.png)
Hence, the current is 0.21 A.