Answer:
• The radius of convergence is 2.
,
• The interval of convergence is (2,6).
Explanation:
Given the series:
![\sum ^(\infty)_(n=0)(-1)^n(n(x-4)^n)/(2^n)](https://img.qammunity.org/2023/formulas/mathematics/high-school/qhantxc0kdfqwfl4zmp28gngd1651k5lf5.png)
We can rewrite it in the form below:
![\sum ^(\infty)_(n=0)(\mleft(-1\mright)^nn(x-4)^n)/(2^n)](https://img.qammunity.org/2023/formulas/mathematics/high-school/k5d5ea3qq6ubqu92z8lyjd1kla48lbg6mu.png)
We apply the ratio's test to find the radius of convergence:
![\lim _(n\to\infty)(a_(n+1))/(a_n)=\lim _(n\to\infty)(((-1)^(n+1)(n+1)(x-4)^(n+1))/(2^(n+1)))/(((-1)^nn(x-4)^n)/(2^n))](https://img.qammunity.org/2023/formulas/mathematics/high-school/j1n9ud9llhl6m7tjut5vr10grd0wyxdicc.png)
First, simplify the fraction:
![\begin{gathered} (((-1)^(n+1)(n+1)(x-4)^(n+1))/(2^(n+1)))/(((-1)^nn(x-4)^n)/(2^n))=((-1)^(n+1)(n+1)(x-4)^(n+1))/(2^(n+1))/((-1)^nn(x-4)^n)/(2^n) \\ =((-1)^(n+1)(n+1)(x-4)^(n+1))/(2^(n+1))*(2^n)/((-1)^nn(x-4)^n) \\ =\frac{(-1)^{}(n+1)(x-4)^{}}{2n} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/xh1i9b28r43hn0n0o7abp9clu57gbek8go.png)
Therefore:
![\begin{gathered} \implies\lim _(n\to\infty)(((-1)^(n+1)(n+1)(x-4)^(n+1))/(2^(n+1)))/(((-1)^nn(x-4)^n)/(2^n))=(-(x-4))/(2)\lim _(n\to\infty)\frac{(n+1)^{}}{n} \\ \text{Divide all though by n} \\ =(-(x-4))/(2)\lim _(n\to\infty)\frac{((n)/(n)+(1)/(n))^{}}{(n)/(n)} \\ =(-(x-4))/(2)\lim _(n\to\infty)(1+(1)/(n))where\begin{cases}\lim _(n\to\infty)(1)=1 \\ \lim _(n\to\infty)((1)/(n))=0\end{cases} \\ \text{Therefore, the limit is:} \\ \lim _(n\to\infty)(((-1)^(n+1)(n+1)(x-4)^(n+1))/(2^(n+1)))/(((-1)^nn(x-4)^n)/(2^n))=(-(x-4))/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/9g2pgppom3h9jwsxuqg0iaylffhf20mtwv.png)
In order for the series to converge, we need:
![\begin{gathered} \lim _(n\to\infty)|(a_(n+1))/(a_n)|<1 \\ \implies|(x-4)/(2)|<1 \\ \implies|x-4|<2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/w8g4kkhqutzs8ydq4aeuuq0cc1bk49xi0e.png)
The radius of convergence is 2.
[tex]\begin{gathered} |x-4|<2 \\ -2
The interval of convergence is (2,6).