123k views
0 votes
I need help with the second problem would you please help understand it??

I need help with the second problem would you please help understand it??-example-1
User Roostaamir
by
9.2k points

1 Answer

1 vote

Answer:

• The radius of convergence is 2.

,

• The interval of convergence is (2,6).

Explanation:

Given the series:


\sum ^(\infty)_(n=0)(-1)^n(n(x-4)^n)/(2^n)

We can rewrite it in the form below:


\sum ^(\infty)_(n=0)(\mleft(-1\mright)^nn(x-4)^n)/(2^n)

We apply the ratio's test to find the radius of convergence:


\lim _(n\to\infty)(a_(n+1))/(a_n)=\lim _(n\to\infty)(((-1)^(n+1)(n+1)(x-4)^(n+1))/(2^(n+1)))/(((-1)^nn(x-4)^n)/(2^n))

First, simplify the fraction:


\begin{gathered} (((-1)^(n+1)(n+1)(x-4)^(n+1))/(2^(n+1)))/(((-1)^nn(x-4)^n)/(2^n))=((-1)^(n+1)(n+1)(x-4)^(n+1))/(2^(n+1))/((-1)^nn(x-4)^n)/(2^n) \\ =((-1)^(n+1)(n+1)(x-4)^(n+1))/(2^(n+1))*(2^n)/((-1)^nn(x-4)^n) \\ =\frac{(-1)^{}(n+1)(x-4)^{}}{2n} \end{gathered}

Therefore:


\begin{gathered} \implies\lim _(n\to\infty)(((-1)^(n+1)(n+1)(x-4)^(n+1))/(2^(n+1)))/(((-1)^nn(x-4)^n)/(2^n))=(-(x-4))/(2)\lim _(n\to\infty)\frac{(n+1)^{}}{n} \\ \text{Divide all though by n} \\ =(-(x-4))/(2)\lim _(n\to\infty)\frac{((n)/(n)+(1)/(n))^{}}{(n)/(n)} \\ =(-(x-4))/(2)\lim _(n\to\infty)(1+(1)/(n))where\begin{cases}\lim _(n\to\infty)(1)=1 \\ \lim _(n\to\infty)((1)/(n))=0\end{cases} \\ \text{Therefore, the limit is:} \\ \lim _(n\to\infty)(((-1)^(n+1)(n+1)(x-4)^(n+1))/(2^(n+1)))/(((-1)^nn(x-4)^n)/(2^n))=(-(x-4))/(2) \end{gathered}

In order for the series to converge, we need:


\begin{gathered} \lim _(n\to\infty)|(a_(n+1))/(a_n)|<1 \\ \implies|(x-4)/(2)|<1 \\ \implies|x-4|<2 \end{gathered}

The radius of convergence is 2.

[tex]\begin{gathered} |x-4|<2 \\ -2The interval of convergence is (2,6).

User Kevin Lynx
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.