Given:
Initial population = 12,000
Rate of increasing = 9% = 0.09
Required: Population after 7 years
Step-by-step explanation:
The population growth after t years is defined as
![P(t)=P_0e^(kt)](https://img.qammunity.org/2023/formulas/mathematics/college/8kotzkkj5dho24bowogih6rtg5kq7wofr4.png)
Substitute the given values into the formula.
![P(t)=12000e^(0.09t)](https://img.qammunity.org/2023/formulas/mathematics/college/jtzdzzc59vgu805qxy8q1hbuek9xio4oxa.png)
To find the population after 7 years, substitute 7 for t in P(t).
![\begin{gathered} P(7)=12000e^(0.09\cdot7) \\ \approx22531 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/tz7w2iyclkxrbikbzonqzmzvyaqxmqmk4m.png)
Final Answer: 22531 marsupials are there after 7 years