Answer
![P=28√(3)](https://img.qammunity.org/2023/formulas/mathematics/college/arq983oux29gossol2vcm0w1esoij4rawd.png)
Step-by-step explanation
The perimeter is the addition of all the side's lengths.
As this is a rectangle, one pair of sides measures 4√27, and the other pair measures √12. Then, the perimeter P can be calculated as follows:
![P=√(12)+√(12)+4√(27)+4√(27)](https://img.qammunity.org/2023/formulas/mathematics/college/rej7x29hlalgyh8yh6hebeynenfw6oyu90.png)
Simplifying:
![P=2√(12)+8√(27)](https://img.qammunity.org/2023/formulas/mathematics/college/npxe2f7d1ooizcmcn002gv31jsevzesqv9.png)
Now, we can further simplify by finding the factors of the numbers inside the square root:
![12=6\cdot2=3\cdot2\cdot2=3\cdot2^2](https://img.qammunity.org/2023/formulas/mathematics/college/g1kkbx1g3ob9ohj7ljnvk8yffzmk5e8hxg.png)
![27=9\cdot3=3\cdot3\cdot3=3^2\cdot3](https://img.qammunity.org/2023/formulas/mathematics/college/nivj3iful74ufqwzyx6621e8latpk0husr.png)
Then, substituting the factors inside the square root in the perimeter equation and simplifying:
![P=2√(3\cdot2^2)+8√(3^2\cdot3)](https://img.qammunity.org/2023/formulas/mathematics/college/4x160yd35fckd1a9m2hhpqpxgtnm1txns6.png)
![P=2\cdot2√(3)+8\cdot3√(3)](https://img.qammunity.org/2023/formulas/mathematics/college/wdby76527izr0t70ddvrs7im2o2img2k9r.png)
![P=4√(3)+24√(3)](https://img.qammunity.org/2023/formulas/mathematics/college/gto5aamiduwnhi1uoht7hw5ptk3bkprkuh.png)
![P=28√(3)](https://img.qammunity.org/2023/formulas/mathematics/college/arq983oux29gossol2vcm0w1esoij4rawd.png)