123k views
2 votes
f(x)=(-x)^3 -x^2-x+13f(0)f(2)f(-2)f(1)+f(-1)The problem is find the function valuesFind function values

1 Answer

6 votes

f(0) = 13

f(2) = -1

f(-2) = 19

f(1) + f(-1) = 24

Step-by-step explanation:
f\mleft(x\mright)=\mleft(-x\mright)^3-x^2-x+13

for f(0): we will substitute x with 0 in the function


\begin{gathered} f(0)=(-0)^3-(0)^2\text{ - 0 + 13} \\ f(0)\text{ = 0 - 0 - 0 + 13} \\ f(0)\text{ = 13} \end{gathered}

for f(2): we wil substitute x with 2 in the function


\begin{gathered} f(2)=(-2)^3-(2)^2-2+13 \\ f(2)\text{ = -8 -4-2 + 13} \\ f(2)\text{ = -1} \end{gathered}

for f(-2): we will substitute x with -2 in the function


\begin{gathered} f\mleft(-2\mright)=\mleft(-(-2)\mright)^3-(-2)^2-(-2)+13 \\ f(-2)=(2)^3-4+2+13\text{ = 8-4+2+13} \\ f\mleft(-2\mright)=\text{ 19} \end{gathered}

for f(1) + f(-1): we will find f(1) and f(-1) seperately, then we will sum the result


\begin{gathered} f(1)=(-1)^3-(1)^2-(1)+13 \\ f(1)\text{ = -1-1-1 + 13} \\ f(1)\text{ = 10} \\ \\ f(-1)=(-(-1))^3-(-1)^2-(-1)+13 \\ f(-1)=(1)^3-1+1+13 \\ f(-1)=\text{ 14} \end{gathered}
\begin{gathered} f(1)\text{ + f(-1) = 10 + 14} \\ f(1)\text{ + f(-1) = 24} \end{gathered}

User Ada Xu
by
4.4k points