199k views
2 votes
F(x) = x^3 - 2x² + x + 1 on [-2,2]

F(x) = x^3 - 2x² + x + 1 on [-2,2]-example-1

1 Answer

3 votes

Given


f\mleft(x\mright)=x^3-2x²+x+1,\left[-2,2\right]

Find

value of c

Step-by-step explanation

mean value theorem states that " Let f be continuous over the closed interval [a , b] and differentiable over the open interval (a , b). Then , there exist atleast one poin c which belongs to (a , b) such that


f^(\prime)(c)=(f(b)-f(a))/(b-a)

so ,


\begin{gathered} f(x)=x^3-2x^2+x+1 \\ f^(\prime)(x)=3x^2-4x+1 \\ f^(\prime)(c)=3c^2-4c+1e^{\placeholder{⬚}} \end{gathered}

and


\begin{gathered} f(b)=f(2)=2^3-2(2)^2+2+1=8-8+3=3 \\ f(a)=f(-2)=(-2)^3-2(-2)^2-2+1=-8-8-1=-17 \end{gathered}

so ,


\begin{gathered} 3c^2-4c+1=(3-(-17))/(2-(-2)) \\ \\ 3c^2-4c+1=(20)/(4) \\ \\ 3c^2-4c+1=5 \\ 3c^2-4c-4=0 \\ 3c^2-6c+2c-4=0 \\ 3c(c-2)+2(c-2)=0 \\ (3c+2)(c-2)=0 \\ c=-(2)/(3),2 \end{gathered}

Final Answer

Therefore , the values of c are -2/3 and 2

User Emiliano Viotti
by
9.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories