Given:
![x^2+y^2-8x+10y=-16](https://img.qammunity.org/2023/formulas/mathematics/college/pthvbznonmvqtmaarwahxz20wbbe2ylh59.png)
Required:
To find the center and radius of the given circle equation.
Step-by-step explanation:
Consider the given equation,
![\begin{gathered} x^2+y^2-8x+10y=-16 \\ \\ x^2+y^2-8x+10y+16=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/lo2jsao99jse7982y7htb50067th5s4huj.png)
Now add and subtract 25 t the given equation ,
![x^2-8x+16+y^2+10y+25-25=0](https://img.qammunity.org/2023/formulas/mathematics/college/4lobvz65wp0156w2rxrkf6yxixbclj7ood.png)
![\begin{gathered} (x-4)^2+(y+5)^2-25=0 \\ \\ (x-4)^2+(y+5)^2=25 \\ \\ (x-4)^2+(y+5)^2=5^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fl34dsev5sif55ems5y59jgiut6c2m0sau.png)
Therefore,
The center is : (4,-5)
The radius is : 5
Final Answer:
The center is : (4,-5)
The radius is : 5