f(x)=-4x2+10x-8
The expression is in the form:
ax^2+bx+c
In this case:
a=-4
b=10
c=-8
Apply the quadratic formula:
![x=\frac{-b\pm\sqrt[\square]{b^2-4ac}}{2a}](https://img.qammunity.org/2023/formulas/mathematics/college/tcklz8koa0d56lx5uka3m8zw9be2mvkh2d.png)
Replace the values:
![x=\frac{-10\pm\sqrt[\square]{10^2-4(-4)-8}}{2(-4)}](https://img.qammunity.org/2023/formulas/mathematics/college/pa68lovkljubmbuulhvd71qzgf3jbvrmt3.png)
The discriminant part is the part of the quadratic formula underneath the square root.
Discriminant : 10^2-(4 (-4)-8)
To find if it has zeroes solve the discriminant:
10^2-(4 (-4)-8) = 100-128 = -28
Since the discriminant is negative, it has no real number solutions.