To answer this question, we can proceed as follows:
1. We have that the scale is 1 inch represents 30 miles.
Then, with this factor we can find the actual area of the park in square miles, as follows:
![4in\cdot\frac{30\text{miles}}{1\text{inch}}=(4in\cdot30miles)/(1inch)=120\text{miles}](https://img.qammunity.org/2023/formulas/mathematics/college/iedh1013zbfhwq4nelxn2n1bkm6ux7q2p1.png)
We use the scale factor to find the actual value for the length of 4 inches. We can use the same for the width of the map:
![6in\cdot(30miles)/(1inch)=(6in\cdot30miles)/(1inch)=180\text{miles}](https://img.qammunity.org/2023/formulas/mathematics/college/hiq4mf9qq3f6zgp397um5nlehqx93eet9r.png)
Now, the actual area of the park in square miles is:
![A_{\text{park}}=120\text{miles}\cdot180\text{miles}=21600\text{miles}^2](https://img.qammunity.org/2023/formulas/mathematics/college/wfkwjdd1sw51hj2idg4wzylt4ape8k139a.png)
Therefore, the actual area of the park is 21,600 square miles.