From the attached picture we can see
The right triangle NPR
NP and PR are its legs
NR is the hypotenuse
x and y are the measures of the 2 acute angles
To find x, we can use the sine ratio
![sin\angle R=(opposite)/(hypotenuse)](https://img.qammunity.org/2023/formulas/mathematics/college/osrq80vkswpxakrsvon2gv759f4fn27jrt.png)
The opposite side is NP = 60
The hypotenuse is NR = 87
Substitute them in the ratio
![sin\angle R=(60)/(87)](https://img.qammunity.org/2023/formulas/mathematics/college/8gjt58ixa49myfxc8vmkp0qchpi9coz7hv.png)
Use the inverse of the sine
![\begin{gathered} \angle R=sin^(-1)((60)/(87)) \\ \angle R=43.60281897^(\circ) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/muucjcw1kbuvnzr00g5q9cg7i2zkz8ac90.png)
Round it to the nearest whole number, then
![\angle R=44^(\circ)](https://img.qammunity.org/2023/formulas/mathematics/college/f08ic7hzyimvimg7mtuhy8yba0umsw8zbo.png)
Since x is the measure of angle R, then
x = 44
Since the sum of the measures of the angle of a triangle is 180 degrees, then
![x^(\circ)+y^(\circ)+90^(\circ)=180^(\circ)](https://img.qammunity.org/2023/formulas/mathematics/college/wl07whijvk21ffg5njt7veyo1af6py3oyi.png)
Substitute x by 44
![\begin{gathered} 44+y+90=190 \\ (44+90)+y=180 \\ 134+y=180 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5rd803vt68nvxpn2onw90mif1ez5arly0t.png)
Subtract 134 from both sides
![\begin{gathered} 134-134+y=180-134 \\ y=46 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/71i6lp5js0hzwbzbh73upfmkmfpq3crdgc.png)
The answers are:
x = 44
y = 46