185k views
1 vote
Find the value of k that makes f(x) continuous at x = -2

Find the value of k that makes f(x) continuous at x = -2-example-1
User Aykut
by
4.8k points

1 Answer

5 votes

The given function is:


f(x)=\begin{cases}-2x^2-5kx;x\leq-2 \\ -x^2+k;x>-2 \\ \square\end{cases}

The function is continuous at x=-2 if:


\begin{gathered} \lim _(x\to-2^-)f(x)=\lim _(x\to-2^+)f(x) \\ \lim _(x\to-2)(-2x^2-5kx)=\lim _(x\to-2)(-x^2+k) \\ -2(-2)^2-5k(-2)=-(-2)^2+k \\ -8+10k=-4+k \\ 9k=-4+8 \\ k=(4)/(9) \end{gathered}

So the value of k is 4/9.

User Unwind
by
4.3k points