Answer:
362
Step-by-step explanation:
Given the cost function, C(x), and total revenue, R(x), as;
![\begin{gathered} C(x)=25x+5430 \\ R(x)=40x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/o93du6wnwluydhmc98ltep4rf31qzh2lxe.png)
Recall that the profit function, P(x), is given as;
![P(x)=R(x)-C(x)](https://img.qammunity.org/2023/formulas/mathematics/high-school/3r9w44q173wp0f0kgyb63izfoqnf6o9s8j.png)
Note that a break-even point is a point where the revenue starts overtaking the cost. At the break-even point, P(x) = 0, so we'll have;
![\begin{gathered} P(x)=0 \\ R(x)-C(x)=0 \\ 40x-(25x+5430)=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9f8k0tkotjtopgguoj9me6ajmvjh1upinb.png)
Let's clear the parentheses and solve for x;
![\begin{gathered} 40x-25x-5430=0 \\ 15x=5430 \\ x=(5430)/(15) \\ x=362 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/89blbe4wkeu28jf5ui0ltdv1bvuy57se6z.png)
We can see from the above that the number of widgets the manufacturer has to sell to break even is 362