109k views
3 votes
An rock is thrown upward from a platform that is 204 feet above ground at 45 feet per second. Use the projectile formula

An rock is thrown upward from a platform that is 204 feet above ground at 45 feet-example-1
User Wit
by
5.1k points

1 Answer

3 votes

Step-by-step explanation

Since we have the equation:


h=-16t^2+v_0t+h_0

Where v_0 = 45 feet per second and h_0 = height above ground = 204

Plugging in the terms into the equation:


h=-16t^2+45t+204

When the rock hits the ground, the height is of 0 ft, thus we need to isolate the time, as shown as follows:


0=-16t^2+45t+204
\mathrm{Switch\:sides}
-16t^2+45t+204=0
\mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:solutions\:are\:}
x_(1,\:2)=(-b\pm √(b^2-4ac))/(2a)
\mathrm{For\:}\quad a=-16,\:b=45,\:c=204
t_(1,\:2)=(-45\pm √(45^2-4\left(-16\right)\cdot \:204))/(2\left(-16\right))

Apply rule -(-a) = a:


=√(45^2+4\cdot \:16\cdot \:204)
\mathrm{Multiply\:the\:numbers:}\:4\cdot \:16\cdot \:204=13056
=√(45^2+13056)
45^2=2025
=√(2025+13056)
\mathrm{Add\:the\:numbers:}\:2025+13056=15081
=√(15081)
t_(1,\:2)=(-45\pm √(15081))/(2\left(-16\right))
\mathrm{Separate\:the\:solutions}
t_1=(-45+√(15081))/(2\left(-16\right)),\:t_2=(-45-√(15081))/(2\left(-16\right))
\mathrm{The\:solutions\:to\:the\:quadratic\:equation\:are:}
t=-(-45+√(15081))/(32),\:t=(45+√(15081))/(32)

Expressing as decimals:


t=-2.43,\text{ t=5.243897}

Since the solution can not be negative, the only possibility is a positive solution.

Therefore, the rock will hit the ground after 5.24 seconds

User Shaunee
by
5.1k points