Answer:
![z^(10)](https://img.qammunity.org/2023/formulas/mathematics/college/zgfeoqtbnpoh31xmqzyxecax6tbw8bwp0w.png)
Explanation:
Given the expression below:
![\mleft((z^9)/(z^4)\mright)^2](https://img.qammunity.org/2023/formulas/mathematics/college/fuwbre8goffr7ywrrwfg4r5ne6asr519ja.png)
Step 1: Apply the division law of indices.
If we have the same base, and the expression is being divided, subtract the indices.
![\begin{gathered} =(z^(9-4))^2 \\ =(z^5)^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/29rjsips4rf834s8nfdby63d5xjv35la89.png)
Step 2: Multiply the indices by the index law of powers.
![\begin{gathered} (a^m)^n=a^(m* n) \\ \implies(z^5)^2=z^(5*2)=z^(10) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/e1bqviuenwizu2z8ybs06w440mrdt8n4cb.png)
The simplified expression is z^(10).