Determine the common difference for the sequence.
![\begin{gathered} d=22-17 \\ =5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/abx0sot0gdxynyok59i8y6y00wgzlorhsu.png)
The first term of sequanece is a = 17.
Determine the number of terms in the sequence.
![\begin{gathered} 67=17+(n-1)\cdot5 \\ (n-1)=(50)/(5) \\ n=10+1 \\ =11 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3yvqe5kxxveikj6jluexssn9hdpfoxscy8.png)
The formula for the sum of n terms of airthmetic sequence is,
![S=(n)/(2)\lbrack2a+(n-1)d\rbrack](https://img.qammunity.org/2023/formulas/mathematics/college/oumubfscl3kpa3j373gi1nj2143kmdssl3.png)
Substitute the values in the formula to determine the sum of airthmetic sequence.
![\begin{gathered} S=(11)/(2)\lbrack2\cdot17+(11-1)\cdot5\rbrack \\ =(11)/(2)\lbrack34+50\rbrack \\ =(11)/(2)\cdot84 \\ =11\cdot42 \\ =462 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fcbdfkrb5q1tsuczzrqakvmegh3490ioaa.png)
Thus sum of aithmetic series is 462.