91.3k views
4 votes
Solve the following system of equations using the Substitution Method. Use the infinity symbol if infinitelymany solutions exist, or enter DNE for no solutions. X-6y=-29 and -x-7y=-23

1 Answer

4 votes


\begin{gathered} x=-5 \\ y=4 \end{gathered}

Step-by-step explanation


\begin{gathered} x-6y=-29\rightarrow equation(1) \\ -x-7y=-23\rightarrow equation(2) \end{gathered}

Step 1

a) isolate the x value in equatino (1) and substitute teh value in equation (2)


\begin{gathered} x-6y=-29\rightarrow equation(1) \\ \text{add 6y in both sides} \\ x-6y+6y=-29+6y \\ x=6y-29 \end{gathered}

now, substitute in equation (2) and solve for y


\begin{gathered} -x-7y=-23\rightarrow equation(2) \\ -(6y-29)-7y=-23 \\ -6y+29-7y=-23 \\ -13y+29=-23 \\ \text{subtract 29 in both sides } \\ -13y+29-29=-23-29 \\ -13y=-52 \\ \text{divide both sides by -13} \\ (-13y)/(-13)=(-52)/(-13) \\ y=4 \end{gathered}

Step 2

now,replace the y value in equation 1 and solve for x


\begin{gathered} x-6y=-29\rightarrow equation(1) \\ \text{replace} \\ x-6(4)=-29 \\ x-24=-29 \\ add\text{ 24 in both sides} \\ x-24+24=-29+24 \\ x=-5 \end{gathered}

so

x=-5

therefore, the system has one solution


\begin{gathered} x=-5 \\ y=4 \end{gathered}

I hope this helps you

User Werner Harnisch
by
9.2k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories