Given data:
* The frequency of the string vibration is f = 200 Hz.
Solution:
(A). The frequency of vibration in terms of the length of the string is,
![f=\frac{\sqrt[]{T}}{L}](https://img.qammunity.org/2023/formulas/physics/college/wsoclt2upk9kyfn1fbj0nf94fva6dnib2j.png)
If the length of the string is decreased to 1/4 of its actual value, then the frequency of the string is,
![\begin{gathered} f^(\prime)=\frac{\sqrt[]{T}}{(L)/(4)} \\ f^(\prime)=\frac{4\sqrt[]{T}}{L} \\ f^(\prime)=4f \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/cfzzttnlrbhcl1l6jpgpikytgwj5pv7mdh.png)
Substituting the known values,
![\begin{gathered} f^(\prime)=4*200\text{ } \\ f^(\prime)=800\text{ Hz} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/ouf6cvkz4iy5h5r59dv6h06ecph2xiwiw3.png)
Thus, the frequency of the vibration in the given case is 800 Hz.
(B). If the tension of the string is quadrupled, that is its value becomes 4 times the actual value, then the frequency of the vibration is,
![\begin{gathered} f^(\prime)=\frac{\sqrt[]{4T}}{L} \\ f^(\prime)=\frac{2\sqrt[]{T}}{L} \\ f^(\prime)=2f \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/vasnw44s26t8wbrf7wsqvm0eswm6miejja.png)
Substituting the known values,
![\begin{gathered} f^(\prime)=2*200 \\ f^(\prime)=400\text{ Hz} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/683iqtwz1u9w65qdyr8utydq03wcae2vuv.png)
Thus, the frequency of the vibration becomes 400 Hz.