157k views
4 votes
Given f(x)=50x a Graph b(x)=f(x)-150. Then complete the table of corresponding points on b(x)b.Write the equation for the function b(x) in general formc. Describe the transformation performed on f(x) to produce b(x)

Given f(x)=50x a Graph b(x)=f(x)-150. Then complete the table of corresponding points-example-1
User Nabin
by
3.5k points

1 Answer

6 votes

We have the following:

We replace one function within the other and we are left


\begin{gathered} f(x)=50x \\ b(x)=f(x)-150 \\ b(x)=50x-150 \end{gathered}

now we replace the values in this new function,


\begin{gathered} b(2)=50\cdot2-150=100-150=-50 \\ b(4)=50\cdot4-150=200-150=50 \\ b(6)=50\cdot6-150=300-150=150 \\ b(8)=50\cdot8-150=400-150=250 \end{gathered}

The table complete is:

a.

b.

general form


\begin{gathered} y=50x-150 \\ y-50x+150=0 \end{gathered}

c.

Which means that a translation of 150 units down

Given f(x)=50x a Graph b(x)=f(x)-150. Then complete the table of corresponding points-example-1
Given f(x)=50x a Graph b(x)=f(x)-150. Then complete the table of corresponding points-example-2
User Firebellys
by
3.2k points