The formula for caluculating the compound amount is
For this question,
p = $10,205.3
r = 4.434% = 0.004434
t = 6
A.
If interest is compounded monthly,
n = 12
![\begin{gathered} A\text{ = 10205.3(}1+(0.004434)/(12))^(12(6)) \\ A=10205.3(1+0.003695)^(72) \\ A=\text{ 10205.3(}1.003695)^(72) \\ A=10205.3(1.30414) \\ A\text{ =\$ 13,309}.22 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/z1n03xe9kld5b4xzrzti9deopw5f3grdrm.png)
B.
If interest is compounded weekly:
n = 52
![\begin{gathered} A\text{ = }10250(1+(0.004434)/(52))^{52\text{ x 6}} \\ A=10250.3(1.000085)^(312) \\ A=\text{ 10205.3}(1.3046) \\ A\text{ = \$1}3,314.23 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/d2it9yvgunjamr75addfx8zit1wb0b22m2.png)
C. If interest is compounded continuously:
n =365,
![\begin{gathered} A\text{ = 10,205.3(1 + }(0.004434)/(365))^{365\text{ x 6}} \\ A=10,205.3(1+0.000012147)^(2190) \\ A=10,205.3(1.000012147)^(2190) \\ A=10,205.3(1.304766) \\ A=\text{ \$}13,315.53 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9zsi6ksl19neytii8cdmckef9xcqr5j4ku.png)
Hence,
If interest is compounded monthly, the value is $13,309.22
If interest is compounded weekly, the va;ue is $13,314.23
And If interest is compounded continuously, the value is $13,315.53.