ANSWER
2 - √3
Step-by-step explanation
15 degrees is the difference between 45 degrees and 30 degrees. We know the exact value of the tangent of these angles,
![\begin{cases}\tan 30\degree=\frac{\sqrt[]{3}}{3} \\ \\ \tan 45\degree=1\end{cases}](https://img.qammunity.org/2023/formulas/mathematics/college/xuripft2pb7i1m1fbpbrmr7mgrd21945gy.png)
Using the identity,

If A is 45° and B is 30°,
![\tan (45-30)=\tan (15)=(\tan45-\tan30)/(1+\tan45\tan30)=\frac{1-\frac{\sqrt[]{3}}{3}}{1+1\cdot\frac{\sqrt[]{3}}{3}}=\frac{1-\frac{\sqrt[]{3}}{3}}{1+\frac{\sqrt[]{3}}{3}}](https://img.qammunity.org/2023/formulas/mathematics/college/n9dbzbwtfwljymom53jz5o9auwpwf0wqk5.png)
Add the numbers in the denominator and the numerator,
![\tan (15)=\frac{\frac{3-\sqrt[]{3}}{3}}{\frac{3+\sqrt[]{3}}{3}}=\frac{3-\sqrt[]{3}}{3+\sqrt[]{3}}](https://img.qammunity.org/2023/formulas/mathematics/college/lipzs1youx32syv9oyipgypxw830xph217.png)
To simplify this expression, multiply and divide by (3 - √3),
![\tan (15)=\frac{(3-\sqrt[]{3})}{(3+\sqrt[]{3})}\cdot\frac{(3-\sqrt[]{3})}{(3-\sqrt[]{3})}](https://img.qammunity.org/2023/formulas/mathematics/college/wgeyyvl06lgl5fa1m0cg6nle6e1gf2o207.png)
The denominator is a difference of two squares, and the numerator is the square of the binomial,
![\tan (15)=\frac{(3-\sqrt[]{3})^2}{3^2-(\sqrt[]{3})^2}=\frac{3^2-6\sqrt[]{3}+3}{9-3}=\frac{12-6\sqrt[]{3}}{6}=(12)/(6)-\frac{6\sqrt[]{3}}{6}=2-\sqrt[]{3}](https://img.qammunity.org/2023/formulas/mathematics/college/sm2zoor860mm5k7l58cbzx67g2ckkl5qth.png)
Hence, the value of tan15° is 2 - √3.