Given data:
* The length of the string is L = 1 m.
* The initial value of tension in the string is,

* The final value of tension of the string is,

* The new frequency of the string is,

Solution:
The frequency in terms of length and tension is,
![f_1=\frac{\sqrt[]{T_1}}{L}\ldots\ldots.(1)](https://img.qammunity.org/2023/formulas/physics/college/e448pkltznrt0dvxchs7xu7xkmv4os2wwp.png)
The frequency in terms of length and tension in the final state is,
![f_2=\frac{\sqrt[]{T_2}}{L}\ldots\ldots\ldots..(2)](https://img.qammunity.org/2023/formulas/physics/college/i9gypj7zlz66ystptkvomqx8v8ndyhzlk8.png)
Dividing equations (1) and (2),
![\begin{gathered} (f_1)/(f_2)=\frac{\frac{\sqrt[]{T_1}}{L}}{\frac{\sqrt[]{T_2}}{L}}_{} \\ (f_1)/(f_2)=\frac{\sqrt[]{T_1}}{\sqrt[]{T_2}} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/6cw7iqlb0312b90108acxhuqx1vpbo2ioz.png)
Substituting the known values,
![\begin{gathered} (f_1)/(400)=\frac{\sqrt[]{1*10^2}}{\sqrt[]{1.5*10^2}} \\ (f_1)/(400)=\frac{1}{\sqrt[]{1.5}} \\ f_1=400*\frac{1}{\sqrt[]{1.5}} \\ f_1=326.6\text{ Hz} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/e857ze3lcqvi51g410rxy4c9fdrepbla5k.png)
Thus, the original frequency of the string is 326.6 Hz.