![\begin{gathered} 3x^2-5x=-8 \\ 3x^2-5x+8=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/jefgobbq2yovvmxpbemp9dsgvvbj2n329z.png)
This equation has the next form:
![ax^2+bx+c=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/mvkhuzwnjhb4epaf7jjcoq2vi4zdi4350m.png)
To find if the equation has two complex solutions we have to check if the discriminant is negative, as follows:
![\begin{gathered} b^2-4ac \\ (-5)^2-4\cdot3\cdot8=25-96=-71<0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/yr24nxq03p5jjq9pqtjljvvl2pteb248wz.png)
Then, the first case has two complex solutions.
In the second case,
![\begin{gathered} 2x^2=6x-5 \\ 2x^2-6x+5=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9rpolu7hvb0dslh2of5aky6bpxq6x7ecer.png)
The discriminant in this case is:
![(-6)^2-4\cdot2\cdot5=36-40=-4<0](https://img.qammunity.org/2023/formulas/mathematics/college/liylevwad5gkfkhinv2f91u42wy18fx7d3.png)
Then, the second case has two complex solutions.
In the third case,
![\begin{gathered} 12x=9x^2+4 \\ -9x^2+12x-4=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/e9se4xoq0f1875jul9t9rab0npuofugje2.png)
The discriminant in this case is:
![12^2-4\cdot(-9)\cdot(-4)=144-144=0](https://img.qammunity.org/2023/formulas/mathematics/college/sv2xy1kwbk75txd2oolzkbsalel0tral2h.png)
Then, the third case has two real solutions.
In the fourth case,
![\begin{gathered} -x^2-10x=34 \\ -x^2-10x-34=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/x7zt5qa328xig1uh3yu0moindpz3b2hqmr.png)
The discriminant in this case is:
![(-10)^2-4\cdot(-1)\cdot(-34)=100-136=-36<0](https://img.qammunity.org/2023/formulas/mathematics/college/k55jmzgmxgrqm1l50bprddo3ygmx0elylx.png)
Then, the fourth case has two complex solutions.