Solution
- The coordinates of the points read from the graph given are:
A=(-2,3)
B=(0,6)
C=(5,4)
D=(3,-1)
E=(-1,-2)
- To find the perimeter, we can use the distance between two points formula to find the lengths of each side of the polygon after which we add them up.
- Thus, we have:
![\begin{gathered} D=√((y_2-y_1)^2+(x_2-x_1)^2)\text{ \lparen Distance between two points\rparen} \\ \\ AB=√((6-3)^2+(0--2)^2) \\ AB=√(9+4)=√(13) \\ \\ BC=√((6-4)^2+(0-5)^2) \\ BC=√(4+25)=√(29) \\ \\ CD=√((4--1)^2+(5-3)^2) \\ CD=√(25+4)=√(29) \\ \\ DE=√((-2--1)^2+(-1-3)^2) \\ DE=√(1+16)=√(17) \\ \\ AE=√((3--2)^2+(-2--1)^2) \\ AE=√(25+1)=√(26) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4g6w59bby7fpcpmstuc2lxe1tfaxstwe29.png)
- Thus, the Perimeter is
![\begin{gathered} P=AB+BC+CD+DE+AE \\ P=√(13)+√(29)+√(29)+√(17)+√(26) \\ P=23.598006...\approx24units \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/1ily8f7ebwe0iwrl043v9gy25pbgneq5ok.png)
- Thus the best approximation is 24.3 units (OPTION B)