Given:
![f(x)=2\sin(3x)](https://img.qammunity.org/2023/formulas/mathematics/college/qb9o3p3s9wog0h478g2yfbvtrls3ndbajr.png)
Required:
To find the period and amplitude of the given function.
Step-by-step explanation:
Given function is in the form of
![y=a\sin bx](https://img.qammunity.org/2023/formulas/mathematics/college/y04s89xrvk8ifnsp58c4yyat7vipsa8g6j.png)
Here the amplitude is
![=|a|](https://img.qammunity.org/2023/formulas/mathematics/college/hxkse2pld4zzrbl4c388e70vnrv628yv6y.png)
Period
![=(2\pi)/(b)](https://img.qammunity.org/2023/formulas/mathematics/college/1dwpvfu2vxs6zr3za3ifser35zokro23il.png)
Now consider the given function
![y=2\sin3x](https://img.qammunity.org/2023/formulas/mathematics/college/lure05nixt2eazqtzk0b13j72n9f8uqxiq.png)
Here the amplitude is
![\begin{gathered} =|2| \\ =2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/iexx92ikr6ul5ixlv174khg06ksajieqws.png)
And period is
![=(2\pi)/(3)](https://img.qammunity.org/2023/formulas/mathematics/college/mz44b80anqw1bqkdob6siujiyqlbwefiso.png)
Final Answer:
The amplitude is 2 and the period is
![(2\pi)/(3)](https://img.qammunity.org/2023/formulas/mathematics/college/mg5wo1i16i09bk587dguxr0qvqxf5y96kg.png)