Given
![R(x)=(13x+13)/(8x+16)](https://img.qammunity.org/2023/formulas/mathematics/college/q7othpfzdhythjsvrtnehck7adjr0zmn7q.png)
To find:
a) The domain of R(x).
b) The vertical asymptote.
c) The horizontal asymptote.
Step-by-step explanation:
It is given that,
![R(x)=(13x+13)/(8x+16)](https://img.qammunity.org/2023/formulas/mathematics/college/q7othpfzdhythjsvrtnehck7adjr0zmn7q.png)
a) Consider
![\begin{gathered} 8x+16\\e0 \\ \Rightarrow8x\\e-16 \\ \Rightarrow x\\e-(16)/(8) \\ \Rightarrow x\\e-2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/sc71ywjyj0dl0c66d322ed075isgw0rb0e.png)
Hence, the domain of R(x) is,
![\lbrace x|x\\e-2\rbrace](https://img.qammunity.org/2023/formulas/mathematics/college/7tc6tznxp6pj23i57p0a26hmbm6uojez5p.png)
b) To find, the vertical asymptote set the denominator equal to 0 and solve for x.
![\begin{gathered} \Rightarrow8x+16=0 \\ \Rightarrow8x=-16 \\ \Rightarrow x=-(16)/(8) \\ \Rightarrow x=-2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ess3pycviqirbebhre9719cbr9zro1on16.png)
Hence, the vertical asymptote is x=-2.
c) To find the horizontal asymptote set y as the fraction of the coefficients of x in the numerator and the denominator.
![\Rightarrow y=(13)/(8)](https://img.qammunity.org/2023/formulas/mathematics/college/fwlg6uhmjsxk6ye7n34xe3v36fff5gsduv.png)
Hence, the horizontal asymptote is 13/8.
Thus,
a) The domain is,
![\lbrace x|x\\e-2\rbrace](https://img.qammunity.org/2023/formulas/mathematics/college/7tc6tznxp6pj23i57p0a26hmbm6uojez5p.png)
b) The vertical asymptote is x=-2.
c) The horizontal asymptote is y=13/8.