Let a, b, and c be the lengths of the sides (in ft) of the triangle.
Since one side of a triangle is twice the smallest side, the third side is four feet more than the shortest side and the perimeter is 12 feet, then f c is the length of the smallest side, then we can set the following system of equations:
![\begin{gathered} a=2c, \\ b=c+4, \\ a+b+c=12. \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/et0b3v89942a9br1cftgfkcgs4ypippzwv.png)
Substituting the first and second equations in the third one we get:
![2c+c+4+c=12.](https://img.qammunity.org/2023/formulas/mathematics/college/dyigejzm4gtl92fakxqd05d8b0und51efh.png)
Adding like terms we get:
![4c+4=12.](https://img.qammunity.org/2023/formulas/mathematics/college/oxbievb493mitgbjnwh7til5xqxmnnwaud.png)
Subtracting 4 from the above equation we get:
![\begin{gathered} 4c+4-4=12-4, \\ 4c=8. \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xnaxh6mdlo98374sb1k2wicu9dsjtb4dgr.png)
Dividing the above equation by 4 we get:
![\begin{gathered} (4c)/(4)=(8)/(4), \\ c=2. \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/53fml6mmgkbcx3ddmu0r4ut6mqp4hxa14t.png)
Finally, substituting c=2 in the first and second equations we get:
![\begin{gathered} a=2\cdot2=4, \\ b=2+4=6. \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/1n2zwaha66v8gaocu0ki3jejmpxi6vwv6f.png)
Answer: The lengths of all three sides (in feet) are: 2, 4, and 6.