We can solve this problem by applying the rule of three.
6a) We have
![\begin{gathered} 1\text{ recipe ---- }(3)/(4)\text{pound potatoes} \\ 3\text{ recipes ----- x} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/r2ai063dc0ja084ccp76buu9jgcla6xpw1.png)
where x correspond to the pound potatoes for 3 recipes.
Then, x is given by
![x=(3*(3)/(4))/(1)](https://img.qammunity.org/2023/formulas/mathematics/college/qua88cdb96gjqzcwc9xk1hhm46tt1iefkl.png)
which gives
![\begin{gathered} x=3*(3)/(4) \\ x=(9)/(4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/b7o8nmw4tg2hhdw51aq9yl6w8hbas1w3ph.png)
Therefore, the answer for 6a is
![(9)/(4)\text{ pound of potatoes}](https://img.qammunity.org/2023/formulas/mathematics/college/1enn872b2m4ovyhmd11dvdjcfpqk8oidv1.png)
6b)
Similarly,
![\begin{gathered} 1\text{ recipe ----- }(1)/(2)cup\text{ of beans} \\ 3\text{ recipes ---- y} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fgoy4qbeiers4ze37hgk6zhjr2dnkx1wil.png)
where y corresponds to the cups of beams for 3 recipes. Then, y is given by
![y=(3*(1)/(2))/(1)](https://img.qammunity.org/2023/formulas/mathematics/college/oc7p6z59cn0meci51xmadwkdpah3dl1bls.png)
which gives
![\begin{gathered} y=3*(1)/(2) \\ y=(3)/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/rkhtazuial7gkzlcthjzqmtrmi2cgbl7nv.png)
Therefore, the answer for 6b is
![(3)/(2)\text{ cups of gre}en\text{ beans}](https://img.qammunity.org/2023/formulas/mathematics/college/sgegva5tlqge37w45bxyt96u94y1rtuocr.png)
6c)
In this case, we have
![\begin{gathered} 1\text{ recipe ---- }1(3)/(4)\text{ tomatoes} \\ 3\text{ recipes ----- z} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vlgvl2o0r979a2uhuk5syhai503hl8xp6e.png)
where z corresponds to the number of cups of tomatoes for 3 recipes. Then, z is given by
![z=(3*1(3)/(4))/(1)](https://img.qammunity.org/2023/formulas/mathematics/college/y47rlrmyorlh6e5qjiplpv4legh4ziny7q.png)
which gives
![z=3*1(3)/(4)](https://img.qammunity.org/2023/formulas/mathematics/college/8gppml4hsy24hudfta6bh4jdaamlueajs0.png)
In order to obtain the product, we need to convert the mixed fraction into a simple fraction form, that is
![1(3)/(4)=(4*1+3)/(4)=(7)/(4)](https://img.qammunity.org/2023/formulas/mathematics/college/f9yrvj2d8vnc7gjfckge4e54nk81t7oad8.png)
then, we have
![z=3*(7)/(4)](https://img.qammunity.org/2023/formulas/mathematics/college/anektuy7bszjto92pqn5c3e083rbjc07r3.png)
And the answer for 6c is
![z=(21)/(4)\text{ cups of tomatoes}](https://img.qammunity.org/2023/formulas/mathematics/college/vnvy9oaq7jdnwzdymli7xqczgko81e5bga.png)