Answer:
![y=2x^2-12x+20](https://img.qammunity.org/2023/formulas/mathematics/college/ma1d9q77f7dlryjuxc2s3b3lovsj9stlbb.png)
Step-by-step explanation:
The vertex form of the equation of a parabola is given as:
![y=a(x-h)^2+k](https://img.qammunity.org/2023/formulas/mathematics/college/97p0xsjs0cwme4ddvwkim2cbbqprhnlhsv.png)
Given that the vertex (h,k)=(3,2)
We have:
![y=a(x-3)^2+2](https://img.qammunity.org/2023/formulas/mathematics/college/jiaz2k84sd2en728sjedkoqf8660or8ddq.png)
Since it goes through the point (1,14):
x=1, y=14
![\begin{gathered} 14=a(1-3)^2+2 \\ 14=a(-2)^2+2 \\ 14-2=4a \\ 4a=12 \\ a=3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/bkwcznzbyhg8lnn3kdjarezlec9e0b1upy.png)
The equation of the parabola is:
![\begin{gathered} y=2(x-3)^2+2 \\ =2(x-3)(x-3)+2 \\ =2(x^2-6x+9)+2 \\ y=2x^2-12x+20 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/tnv0vbivebuiq0kroecr3xqzakpcetgl9t.png)
The equation of the parabola is:
![y=2x^2-12x+20](https://img.qammunity.org/2023/formulas/mathematics/college/ma1d9q77f7dlryjuxc2s3b3lovsj9stlbb.png)