Solution
Given that;
There are 6 red marbles and 10 white marbles
Total marbles is
![6+10=16\text{ marbles}](https://img.qammunity.org/2023/formulas/mathematics/college/fstved9t6md9uyth077lfpi83q9cum9pp0.png)
To find the probability of randomly choosing a marble, the formula is
![Probability=\frac{Required\text{ outcome}}{Total\text{ possible outcome}}](https://img.qammunity.org/2023/formulas/mathematics/college/z3pbn95fu0p2c9n7th5jfd2e7rxsvv89ad.png)
Let the probability of randomly choosing a white marble be represented by P(W)
Where the
![\begin{gathered} Required\text{ outcome}=10 \\ Total\text{ possible outcome}=16 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ji49g7bt4gj3066b9jaei9adjsudo0yrd5.png)
The probability of randomly choosing a white marble, P(W) is
![\begin{gathered} P(W)=(10)/(16)=(5)/(8) \\ P(W)=(5)/(8) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/uy403xkw4b2naic039dbfc2eb1rehlai8k.png)
Hence, the probability of randomly choosing a white marble, P(W) is 5/8