Answer:
The image is given below as
From the image above,
We have the given values as
![\begin{gathered} \theta=60^0 \\ hypotenus=2 \\ opposite=a \\ adjacent=b \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/b9q4fzxroqn69gan40jjnqcolffyq66sj8.png)
Step 1:
To figure out the value of a, we will use the trigonometric ratio below
![\begin{gathered} \sin\theta=(opposite)/(hypotenu) \\ \sin60=(a)/(2) \\ cross\text{ multiply} \\ a=2\sin60 \\ a=2*(√(3))/(2) \\ a=√(3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5hxwog947ffd8dcajn5no97ygqm7jdrotf.png)
Hence,
The value of a is
![\Rightarrow a=√(3)](https://img.qammunity.org/2023/formulas/mathematics/college/z9uopqcp0qqivlwjpx5izj4140prs6abn6.png)
Step 2:
To calculate the value of b, we will us ethe trigonometric ratio below
![\begin{gathered} \cos\theta=(adjacent)/(hypotenu) \\ \cos60^0=(b)/(2) \\ cross\text{ multiply, } \\ b=2\cos60 \\ b=2*(1)/(2) \\ b=1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fqazuttz6noaqav6kc4uc4c1jv6ptg96qj.png)
Hence,
The value of b is
![\Rightarrow b=1](https://img.qammunity.org/2023/formulas/mathematics/college/d9h11djjdwrwi709rg9kmuts5x53o1dlmv.png)