115k views
4 votes
Question #5: On the moon, what would be the force of gravity acting on an object that has a mass of 7 kg?

User Robbie Liu
by
4.9k points

1 Answer

4 votes

F=11.375\text{ Newtons}

Step-by-step explanation

the acceleration due to gravity formula is given by:


\begin{gathered} g=(GM)/(R^2)^{} \\ \text{where} \\ G\text{ is the universal gravitational constatn G=6.674 }\cdot10^(-11)\frac{m^3}{\operatorname{kg}\cdot s^2} \\ R\text{ is the radius of the massive body ( in meters)} \\ g\text{ is the acceleration due to gravity} \\ M\text{ is the mass of the massive body ( kg)} \end{gathered}

Step 1

Find g(acceleration due to gravity)

Let


\begin{gathered} M=\text{ mass of the moon=7.35}\cdot10^(22)\operatorname{kg} \\ G=\text{=6.674 }\cdot10^(-11)\frac{m^3}{\operatorname{kg}\cdot s^2} \\ R=\text{radius of the moon=}1.74\cdot10^6m \end{gathered}

now, replace in the formula


\begin{gathered} g=(GM)/(R^2)^{} \\ g=\frac{\text{6.674 }\cdot10^(-11)\frac{m^3}{\operatorname{kg}\cdot s^2}\cdot\text{7.35}\cdot10^(22)\operatorname{kg}}{(1.74\cdot10^6m)^2} \\ g=(4.90539\cdot10^(12))/((3.0276\cdot10^(12))) \\ g=1.62(m)/(s^2) \end{gathered}

Step 2

to find the force , use the formula


\begin{gathered} F=\text{mg} \\ \text{where m is the mass of the object} \\ g\text{ is the acceleration due to gravity} \end{gathered}

replace


\begin{gathered} F=7\operatorname{kg}\cdot1.625\text{ }(m)/(s^2) \\ F=11.375\text{ Newtons} \end{gathered}

therefore, the force would be

11.375 N

User Roman Purgstaller
by
5.0k points