![y=\sqrt[]{x}-5](https://img.qammunity.org/2023/formulas/mathematics/college/6o6sbdmljs940z8tpoxp3mhtm9c25t1xua.png)
Domain:
we know that a root cannot have negative values inside so
![\begin{gathered} \sqrt[]{x}\ge0 \\ x\ge0^2^{} \\ x\ge0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/phzec578y0brox4bi5gzftjuy6hl34zo5b.png)
the domain is X >= 0
Range:
we solve the equation for y
![\begin{gathered} y=\sqrt[]{x}-5 \\ y+5=\sqrt[]{x} \\ (y+5)^2=x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qloju4oeag27x29maidify67nhgomtojhj.png)
and we replace the condition that x must be greater than or equal to 0
so
![(y+5)^2\ge0](https://img.qammunity.org/2023/formulas/mathematics/college/jfphunvllztevsjqbjzi3bkckq6qddf3eu.png)
now solve y
![\begin{gathered} y+5\ge0^2 \\ y+5\ge0 \\ y\ge-5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fcg3mipw640vv3fd5dbg2v624rhl9jjavw.png)
so the range is Y >= -5
then the right option is A