The Solution:
Let the present value of the investment be represented with P.
We shall use the formula below:
![\begin{gathered} A=P(1+(r)/(100\alpha))^(n\alpha) \\ \text{Where} \\ A=\text{amount (after 5years)}=\text{ \$7000} \\ r=rate\text{ (in \%)=6 \%} \\ n=\text{ number of years =5 years} \\ \alpha=\text{ number of periods per annum =12} \\ P=\text{ Principal = initial investment=?} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wxikd77y2w40uf4fhzdflrmslhyw23gfyl.png)
Substituting these values in the formula above, we get
![\begin{gathered} 7000=P(1+(6)/(100*12))^((5*12)) \\ \\ 7000=P(1+(6)/(1200))^(60) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/flegmskot0pabb64myydr0umsytvsp8bka.png)
So,
![\begin{gathered} 7000=P(1+0.005)^(60) \\ \\ 7000=P(1.005)^(60) \\ \text{Dividing both sides by 1.005}^(60),\text{ we get} \\ P=(7000)/(1.005^(60))=(7000)/(1.348850153)=5189.605\approx\text{ \$5189.61 (518961cent)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fw0sg3wupi0k7ry3s07e8r92vgk6t9kheu.png)
Thus, the present value of the investment that will yield $7000 at the end of 5 years is $5189.61 (or 518961 cents )
Therefore, the correct answer is $5189.61 (or 518961 cents )