Given:
![\begin{gathered} y\alpha x \\ x=6,y=54 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/qbuww9cggmkeueyizdcktv4trid52x5eki.png)
To Determine: The equation describing the relationship between y and x
Solution:
Step 1: Introduce the constant into the given variation
![\begin{gathered} y=kx \\ k=\text{constant} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/wkscv3kges7l97272dkfzw8gfmw6z7e2qs.png)
Step 2: Substitute the given values of y and x to find the constant
![\begin{gathered} y=kx,x=6,y=54 \\ k=(y)/(x) \\ k=(54)/(6) \\ k=9 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/q7q5j624al236o4dzr746ob33zg8oq6z3d.png)
Step 3: Substitute k into the equation
![\begin{gathered} y=kx,k=9 \\ y=9x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/q3illgqhp8cod69byu4t1it71bnwjjds3z.png)
Hence, the equation describing the relationship between x and y is
y = 9x