We can start by doing the next substitution:

Then we have the next function:

It is in the form:

Where a=1, b=-18 and c=81.
Then we can use the quadratic formula to find the roots:
![\begin{gathered} u=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \\ u=\frac{-(-18)\pm\sqrt[]{(-18)^2-4(1)(81)}}{2(1)} \\ u=\frac{18\pm\sqrt[]{324-324}}{2} \\ u=\frac{18\pm\sqrt[]{0}}{2} \\ u=(18\pm0)/(2) \\ u=(18)/(2) \\ u=9 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ya7j7qhgcojf58r3g89daqyolc777je1dv.png)
Now, replace this value into the initial substitution:
![\begin{gathered} 9=x^2 \\ \rightarrow x=\pm\sqrt[]{9} \\ \rightarrow x=+3\text{ and x=-3} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fvv9ua4g7jv22el12dju3ap4b1y03wavcc.png)
The zeros of the function are x=3 and x=-3.
The graph is: