Solution:
Given:
To solve the angle, we use the theorem of angles in a cyclic quadrilateral.
The theorem states that the opposite angles in a cyclic quadrilateral are supplementary (i.e. they add up to 180°).
Hence,
![\begin{gathered} \angle A+\angle C=180^0 \\ \angle B+\angle D=180^0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/d5qd5nruidc1o23728me8gg8p7aw42jlry.png)
Thus,
![\begin{gathered} \angle A+\angle C=180^0 \\ (x+2)+(x-2)=180^0 \\ x+x+2-2=180 \\ 2x=180 \\ x=(180)/(2) \\ x=90^0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/1nam3c4zdv2r0mubkuxl11kzp3qh943hvj.png)
Hence,
![\begin{gathered} \angle A=x+2=90+2 \\ \angle A=92^0 \\ \\ \angle C=x-2=90-2 \\ \angle C=88^0 \\ \\ \angle D=x-10=90-10 \\ \angle D=80^0 \\ \\ \text{Also, } \\ \angle B+\angle D=180^0 \\ \angle B+80=180 \\ \angle B=180-80 \\ \angle B=100^0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/nj50nn4s5spy41spbec7z2u64l55u65hl0.png)
Therefore, the measure of each angle of the quadrilateral is;
![\begin{gathered} \angle A=92^0 \\ \angle B=100^0 \\ \angle C=88^0 \\ \angle D=80^0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/rkosrr8k214wpwfammyj6fw2y9q99ge64m.png)