Given:
The dimensions of the cuboid are:
length (l) = 4cm
breadth (b) = 3cm
height (h) = 12cm
The volume of the cuboid
The volume (V) of a cuboid can be found using the formula:

Substituting we have:

The surface area (SA) of the cuboid:
The surface area of a cuboid can be calculated using the formula:

Substituting we have:

The diagonal length of cuboid:
The diagonal (d) of a cuboid can be found using the formula:
![d\text{ = }\sqrt[]{l^2^{}+b^2+h^2}](https://img.qammunity.org/2023/formulas/mathematics/college/dddcy0bfutug5lhozhxl3h2ge144h9ke3c.png)
Substituting we have:
![\begin{gathered} d\text{ = }\sqrt[]{4^2+3^2+12^2} \\ =\text{ 13 cm} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qh3dra5xsha7t8bt3qywpu1nxe5ucboavc.png)
Answer summary
Volume = 144 cubic centimeters
Surface area = 192 square centimeters
length of diagonal = 13cm