Answer:
The solutions to the equation are:

Step-by-step explanation:
Given the equation below;

We want to find the solutions of the quadratic equation.
Applying the quadratic formula;
![x=\frac{-b\pm\sqrt[]{b^2-4ac}_{}}{2a}](https://img.qammunity.org/2023/formulas/mathematics/college/otjilv1piqld8r71f8ollu8s46dvjcv8jm.png)
from the given equation;

substituting the values;
![\begin{gathered} x=\frac{-(-2)\pm\sqrt[]{(-2)^2-4(1)(-17)}}{2(1)} \\ x=\frac{2\pm\sqrt[]{4^{}+68}}{2} \\ x=\frac{2\pm\sqrt[]{72}}{2} \\ x=\frac{2\pm2\sqrt[]{18}}{2} \\ x=1\pm\sqrt[]{18} \\ \\ x=1-\sqrt[]{18} \\ x=-3.24 \\ or \\ x=1+\sqrt[]{18} \\ x=5.24 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/m6q77er1elthdygzvtu5nu38av3gekkkyi.png)
Therefore, the solutions to the equation are;
