ANSWER:
(25.46, 28.34)
Explanation:
Given:
n (sample size) = 50
m (mean) = 26.9
sd (standard deviation) = 6.06
The formula for the confidence interval is:
![CI=m\pm t_(critical)\left((sd)/(√(n))\right)](https://img.qammunity.org/2023/formulas/mathematics/college/7g142rjfh2a7kun7m3fsrnjdk21dkyqx20.png)
The t- critical value at the 90% confidence level with 42 degrees of freedom is: 1.682.
Therefore, we replacing:
![\begin{gathered} CI=26.9\pm1.682\cdot\left((6.06)/(√(50))\right) \\ CI=26.9+1.682\cdot\left((6.06)/(√(50))\right)=28.34 \\ CI=26.9-1.682\cdot\left((6.06)/(√(50))\right)=25.46 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6u6bnbksny31qifywp95bx3fqzun9mvs4y.png)
The 90% confidence interval is (25.46, 28.34)