66.4k views
4 votes
F(3) = 8; f^ prime prime (3)=-4; g(3)=2,g^ prime (3)=-6 , find F(3) if F(x) = root(4, f(x) * g(x))

F(3) = 8; f^ prime prime (3)=-4; g(3)=2,g^ prime (3)=-6 , find F(3) if F(x) = root-example-1
User Rivalus
by
4.2k points

1 Answer

4 votes

Given:


f(3)=8,f^(\prime)(3)=-4,g(3)=2,\text{ and }g^(\prime)(3)=-6

Required:


We\text{ need to find }F^(\prime)(3)\text{ if }F(x)=\sqrt[4]{f(x)g(x)}.

Step-by-step explanation:

Given equation is


F(x)=\sqrt[4]{f(x)g(x)}.
F(x)=(f(x)g(x))^{(1)/(4)}
F(x)=f(x)^{(1)/(4)}g(x)^{(1)/(4)}

Differentiate the given equation for x.


Use\text{ }(uv)^(\prime)=uv^(\prime)+vu^(\prime).\text{ Here u=}\sqrt[4]{f(x)}\text{ and v=}\sqrt[4]{g(x)}.


F^(\prime)(x)=f(x)^{(1)/(4)}((1)/(4)g(x)^{(1)/(4)-1})g^(\prime)(x)+g(x)^{(1)/(4)}((1)/(4)f(x)^{(1)/(4)-1})f^(\prime)(x)
=(1)/(4)f(x)^{(1)/(4)}g(x)^{(1)/(4)-(1*4)/(4)}g^(\prime)(x)+(1)/(4)g(x)^{(1)/(4)}f(x)^{(1)/(1)-(1*4)/(4)}f^(\prime)(x)
=(1)/(4)f(x)^{(1)/(4)}g(x)^{(1-4)/(4)}g^(\prime)(x)+(1)/(4)g(x)^{(1)/(4)}f(x)^{(1-4)/(4)}f^(\prime)(x)
F^(\prime)(x)=(1)/(4)f(x)^{(1)/(4)}g(x)^{(-3)/(4)}g^(\prime)(x)+(1)/(4)g(x)^{(1)/(4)}f(x)^{(-3)/(4)}f^(\prime)(x)

Replace x=3 in the equation.


F^(\prime)(3)=(1)/(4)f(3)^{(1)/(4)}g(3)^{(-3)/(4)}g^(\prime)(3)+(1)/(4)g(3)^{(1)/(4)}f(3)^{(-3)/(4)}f^(\prime)(3)
Substitute\text{ }f(3)=8,f^(\prime)(3)=-4,g(3)=2,\text{ and }g^(\prime)(3)=-6\text{ in the equation.}
F^(\prime)(3)=(1)/(4)(8)^{(1)/(4)}(2)^{(-3)/(4)}(-6)+(1)/(4)(2)^{(1)/(4)}(8)^{(-3)/(4)}(-4)
F^(\prime)(3)=(-6)/(4)(8)^{(1)/(4)}(2^3)^{(-1)/(4)}+(-4)/(4)(2)^{(1)/(4)}(8^3)^{(-1)/(4)}
F^(\prime)(3)=(-3)/(2)(8)^{(1)/(4)}(8)^{(-1)/(4)}-(2)^{(1)/(4)}(8^3)^{(-1)/(4)}
F^(\prime)(3)=(-3)/(2)\frac{\sqrt[4]{8}}{\sqrt[4]{8}}-\frac{\sqrt[4]{2}}{\sqrt[4]{8^3}}
F^(\prime)(3)=(-3)/(2)-\frac{\sqrt[4]{2}}{\sqrt[4]{(2)^9}}
F^(\prime)(3)=(-3)/(2)-\frac{\sqrt[4]{2}}{\sqrt[4]{(2)^4(2)^4}(2)}
F^(\prime)(3)=(-3)/(2)-\frac{\sqrt[4]{2}}{4\sqrt[4]{}(2)}
F^(\prime)(3)=(-3)/(2)-(1)/(4)
F^(\prime)(3)=(-3*2)/(2*2)-(1)/(4)
F^(\prime)(3)=(-6-1)/(4)
F^(\prime)(3)=(-7)/(4)

Final answer:


F^(\prime)(3)=(-7)/(4)

User Gaj Julije
by
4.2k points