66.4k views
4 votes
F(3) = 8; f^ prime prime (3)=-4; g(3)=2,g^ prime (3)=-6 , find F(3) if F(x) = root(4, f(x) * g(x))

F(3) = 8; f^ prime prime (3)=-4; g(3)=2,g^ prime (3)=-6 , find F(3) if F(x) = root-example-1
User Rivalus
by
8.6k points

1 Answer

4 votes

Given:


f(3)=8,f^(\prime)(3)=-4,g(3)=2,\text{ and }g^(\prime)(3)=-6

Required:


We\text{ need to find }F^(\prime)(3)\text{ if }F(x)=\sqrt[4]{f(x)g(x)}.

Step-by-step explanation:

Given equation is


F(x)=\sqrt[4]{f(x)g(x)}.
F(x)=(f(x)g(x))^{(1)/(4)}
F(x)=f(x)^{(1)/(4)}g(x)^{(1)/(4)}

Differentiate the given equation for x.


Use\text{ }(uv)^(\prime)=uv^(\prime)+vu^(\prime).\text{ Here u=}\sqrt[4]{f(x)}\text{ and v=}\sqrt[4]{g(x)}.


F^(\prime)(x)=f(x)^{(1)/(4)}((1)/(4)g(x)^{(1)/(4)-1})g^(\prime)(x)+g(x)^{(1)/(4)}((1)/(4)f(x)^{(1)/(4)-1})f^(\prime)(x)
=(1)/(4)f(x)^{(1)/(4)}g(x)^{(1)/(4)-(1*4)/(4)}g^(\prime)(x)+(1)/(4)g(x)^{(1)/(4)}f(x)^{(1)/(1)-(1*4)/(4)}f^(\prime)(x)
=(1)/(4)f(x)^{(1)/(4)}g(x)^{(1-4)/(4)}g^(\prime)(x)+(1)/(4)g(x)^{(1)/(4)}f(x)^{(1-4)/(4)}f^(\prime)(x)
F^(\prime)(x)=(1)/(4)f(x)^{(1)/(4)}g(x)^{(-3)/(4)}g^(\prime)(x)+(1)/(4)g(x)^{(1)/(4)}f(x)^{(-3)/(4)}f^(\prime)(x)

Replace x=3 in the equation.


F^(\prime)(3)=(1)/(4)f(3)^{(1)/(4)}g(3)^{(-3)/(4)}g^(\prime)(3)+(1)/(4)g(3)^{(1)/(4)}f(3)^{(-3)/(4)}f^(\prime)(3)
Substitute\text{ }f(3)=8,f^(\prime)(3)=-4,g(3)=2,\text{ and }g^(\prime)(3)=-6\text{ in the equation.}
F^(\prime)(3)=(1)/(4)(8)^{(1)/(4)}(2)^{(-3)/(4)}(-6)+(1)/(4)(2)^{(1)/(4)}(8)^{(-3)/(4)}(-4)
F^(\prime)(3)=(-6)/(4)(8)^{(1)/(4)}(2^3)^{(-1)/(4)}+(-4)/(4)(2)^{(1)/(4)}(8^3)^{(-1)/(4)}
F^(\prime)(3)=(-3)/(2)(8)^{(1)/(4)}(8)^{(-1)/(4)}-(2)^{(1)/(4)}(8^3)^{(-1)/(4)}
F^(\prime)(3)=(-3)/(2)\frac{\sqrt[4]{8}}{\sqrt[4]{8}}-\frac{\sqrt[4]{2}}{\sqrt[4]{8^3}}
F^(\prime)(3)=(-3)/(2)-\frac{\sqrt[4]{2}}{\sqrt[4]{(2)^9}}
F^(\prime)(3)=(-3)/(2)-\frac{\sqrt[4]{2}}{\sqrt[4]{(2)^4(2)^4}(2)}
F^(\prime)(3)=(-3)/(2)-\frac{\sqrt[4]{2}}{4\sqrt[4]{}(2)}
F^(\prime)(3)=(-3)/(2)-(1)/(4)
F^(\prime)(3)=(-3*2)/(2*2)-(1)/(4)
F^(\prime)(3)=(-6-1)/(4)
F^(\prime)(3)=(-7)/(4)

Final answer:


F^(\prime)(3)=(-7)/(4)

User Gaj Julije
by
8.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories