Given:
![\mleft(x^3-5x^2\mright)+\mleft(2x-10\mright)](https://img.qammunity.org/2023/formulas/mathematics/college/87lfp7isxw4svionlrh4gj36r96k3afsv5.png)
You can find all its zeros, as follows:
1. Make the expression equal to zero:
![(x^3-5x^2)+(2x-10)=0](https://img.qammunity.org/2023/formulas/mathematics/college/2en7q6brydn1v3a0f433ycdqio72k36vk6.png)
2. Distribute the positive sign. Remember the Sign Rules for Multiplication:
![\begin{gathered} +\cdot+=+ \\ -\cdot-=- \\ +\cdot-=- \\ -\cdot+=- \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9cred5fa19z66fx4t6jkrlotq2a3i28hhp.png)
Then:
![x^3-5x^2+2x-10=0](https://img.qammunity.org/2023/formulas/mathematics/college/m74eb65dya5cyfg46w8c6xhilfvjdwgcig.png)
3. Factor the expression:
- Make two groups using parentheses:
![(x^3-5x^2)+(2x-10)=0](https://img.qammunity.org/2023/formulas/mathematics/college/2en7q6brydn1v3a0f433ycdqio72k36vk6.png)
- Identify the Greatest Common Factor of each group. For the first group:
![GCF=x^2](https://img.qammunity.org/2023/formulas/mathematics/college/z7ovkserczks03te8p8e72gipu6m4mk1nc.png)
And for the second group:
![GCF=2](https://img.qammunity.org/2023/formulas/mathematics/college/z03gtnb5n8s18m129vfyq5ah7hhh25gism.png)
- Factor them out:
![x^2(x^{}-5^{})+2(x-5)=0](https://img.qammunity.org/2023/formulas/mathematics/college/aql15krsi94hgolw9k8deeix6uhme4ps4g.png)
4. Notice that this expression is common in both terms:
![x-5](https://img.qammunity.org/2023/formulas/mathematics/high-school/w1y33n8hkesdgn43dawt55dbojxf8lm344.png)
Then, you can factor it out:
![(x-5)(x^2+2)=0](https://img.qammunity.org/2023/formulas/mathematics/college/6cm1h19evs5eyxpymay8gb6fui6020bwor.png)
5. Now you can set up these two equations:
![\begin{gathered} x-5=0\text{ (Equation 1)} \\ \\ x^2+2=0\text{ (Equation 2)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/kffsbfm1z3hhgkuhycdkp1islquh1ejnzl.png)
6. Solve for "x" from each equation:
- For Equation 1:
![x_1=5_{}](https://img.qammunity.org/2023/formulas/mathematics/college/wal7n4imsascqe4o4itikbxemklsq7hy14.png)
- For Equation 2:
![\begin{gathered} x^2=-2 \\ x_{}=\pm\sqrt[]{-2} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/uzxcvz6zmkp0bgip4z85el7risj5wyu8w4.png)
By definition:
![\sqrt[]{-1}=i](https://img.qammunity.org/2023/formulas/mathematics/high-school/6auedmvsax8nlo4hpms2kngcv15a6lmlel.png)
Then, you get:
![x=\pm\sqrt[]{-2}\Rightarrow\begin{cases}x_2=i\sqrt[]{2} \\ \\ x_3=-i\sqrt[]{2}\end{cases}_{}](https://img.qammunity.org/2023/formulas/mathematics/college/u5wx7ywvy3zyvvtmxpmdekqlpqk6zqjc80.png)
Hence, the answer is:
![\begin{gathered} x_1=5_{} \\ \\ x_2=i\sqrt[]{2} \\ \\ x_3=-i\sqrt[]{2} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ov41iaac510886xyzul3cxri3wdg6crta5.png)