The Solution:
Given the function money in account A as below:
![f(x)=9628(0.92)^x\ldots\text{eqn}(1)](https://img.qammunity.org/2023/formulas/mathematics/college/zbinpsnxbzfoy5xpna9e1ilax3dxktlcii.png)
![\begin{gathered} f(x)=\text{amount of money (in dollars)} \\ x=\text{ number of years.} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hzsucmrum1ek24m843aefd03qtnu9dvqyw.png)
Part A:
Comparing eqn(1) with the general formula below:
![f(x)=p(1-(r)/(100))^x](https://img.qammunity.org/2023/formulas/mathematics/college/rm69074hcrawxekgdf9ertdhgos366dr1u.png)
We get
![\begin{gathered} p=9628\text{ dollars} \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2lzlyuoz0vn7bxhr5h0oechpnazm7g6knm.png)
![\begin{gathered} 1-(r)/(100)=0.9628 \\ \\ 1-0.9628=(r)/(100) \\ \\ (r)/(100)=0.0372 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2ospz0oedc1b5vrwq4bsz5dkfin0367hn6.png)
Cross multiplying, we get
![\begin{gathered} r=100*0.0372 \\ r=3.72\text{\%} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/jpqieo8c3v5ig82i1521l84sxxxbkkyuke.png)
Thus, the amount of money in account A is decreasing since 0.92 is less than 1.
It is decreasing at 3.72% per year.
Part B:
Given the table below:
To compare the rate of change of the amount of money in account A and account B.
We shall find the rate of change in the amount of money in account B.
By formula,
![\begin{gathered} \text{ Rate of change =}(y_2-y_1)/(x_2-x_1) \\ \text{Where} \\ x_1=1,y_1=8972 \\ x_2=2,y_2=8074.80 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2fdjr7weiu836ksoea646z5p83cd6lj0xl.png)
Putting these values in the formula, we get
![\text{Rate of change =}(8074.80-8972)/(1-2)=(-897.20)/(-1)=897.20\text{ dollars}](https://img.qammunity.org/2023/formulas/mathematics/college/ri9eq1lalf2waoom1w8779jsoqhcmtzevw.png)
But for the money in account A, the rate of change per year is:
![\text{ Rate=}(8972-8074.80)/(8972)*100](https://img.qammunity.org/2023/formulas/mathematics/college/88qdymvfn0la8l9zg5xnx7fk76agq24mx0.png)
![\text{ rate =}(897.20)/(8972)*100=0.1*100=10\text{\%}](https://img.qammunity.org/2023/formulas/mathematics/college/xlgyyb1f6o2j4fk35hl9z4g4hjfjzd1yb9.png)
Thus, account B recorded a greater percentage change in the amount of money than account A, since the rate of account B (10%) is greater than 3.72% of account A.