66.4k views
5 votes
Solve the following quadratic equation by factoring. if needed, write your answer as a fraction we just do those terms.

Solve the following quadratic equation by factoring. if needed, write your answer-example-1
User Stepio
by
4.4k points

1 Answer

2 votes

y= -10 or 4

Step-by-step explanation

given


y^2+6y=40

Step 1

factor

a)subtrac 40 in both sides


\begin{gathered} y^2+6y=40 \\ y^2+6y-40=40-40 \\ y^2+6y-40=0 \end{gathered}

b)write 6y as 10y -4y

so


\begin{gathered} y^(2)+6y-40=0 \\ y^2+10y-4y-40=0 \end{gathered}

c) group and facrtor the common term


\begin{gathered} y^(2)+10y-4y-40=0 \\ y(y+10)-4(y+10)=0 \\ (y+10)\text{ is the common factor, so} \\ (y+10)(y-4)=0 \end{gathered}

so, the new expression is


(y+10)(y-4)=0

Step 2

solve for x


(y+10)(y-4)=0

when the product of 2 factors equals zero, it means one or both factors equals zero, so


\begin{gathered} (y+10)(y-4)=0 \\ (y+10)=0 \\ solve\text{ for y, subtract 10 in both sides} \\ (y+10)-10=0-10 \\ y=-10\Rightarrow solution \\ \end{gathered}

and


\begin{gathered} (y+10)(y-4)=0 \\ (y-4)=0 \\ solve\text{ for y, add 4 in both sides} \\ (y-4)+4=0+4 \\ y=4\Rightarrow solution \\ \end{gathered}

so, the answer is

y= -10 or 4

I hope this helps you

User Nicholas Credli
by
4.4k points