The height of the tree is : 6 + x
Using the trigonometric function : TANGENT to calculate for x
![\tan \theta=\frac{opposite\text{ }}{\text{adjacent}}](https://img.qammunity.org/2023/formulas/mathematics/college/hitbv7mhzlh19s436efd3elgkfbk18oina.png)
From the 36 degree angle, the opposite side is x and the adjacent side is 85
![\begin{gathered} \tan \theta=(x)/(85) \\ x=85\tan \theta \\ x=85\tan 36 \\ x=61.756ft\text{.} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/e1s4ge56f0kxu3kig4ewfxlmg58vufb5cx.png)
The height of the tree is 6 + x = 6 + 61.756 = 67.756 ~ 68 ft
Answer : The height of the tree is 68 ft.